ED 057 579

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDEMTIFIERS

ABSTRACT

DOCUMENT RESUME

EM 009 419

Feurzeig, Wallace; And Others

an Introductory LOGO Teaching Seguence: LOGO Teaching
Sszquence on Logic, LOGO Reference Manual.

Bolt, Beranek and Newman, Inc., Cambridge, Mass.
National Science Foundation, Washington, D.C.

R-2165

30 Jun 71

135p.: Preyramming-Languages as a Conceptual
Framework for Teaching Mathematics, Volume Cne; See
also EM 009 420, EM 009 421, EM 009 422

MF-$0.65 HC-$6.58

*Computer Assisted Instruction; Geometry; Logic;
Manuals; *Mathematics Instruction; *Programing
Languages -

Project LOGO

In earlier work a programing language, LOGO, was

developed to teach mathematics in the framework of computer programs. .
Using 1L.0GO a few programs were tested in both elementary and junior
high school mathematics classrooms with excellent results. The work
reported here iz the first effort to systematically develop extensive
curriculum materials using the LOGO language. This first volume gives
a reference manual on the LOGO language and two of the LOGO teaching
sequences. The short introductory sequence, on teletype geometry, is
one of many possible starting points for studying LOGO. The segquence
on logic is the most advanced of those presented; it has a
sophisticated ability for dealing with syllogistic-type arguments.
For subsequent volumes see EM 009 420, EM 009 421, and EM 009 422,

{JY)

BOLT BERANEK A ND NEWMAN

C O NS UL TI NG «. D EV EL O PMENT

R E S E A

i C

C H

ED057579

¢

Report No. 2165

PROGRAMMING-LANGUAGES AS A ‘CONCEPTUAL
FRAMEway'FOReTEACH:NG MATHEMATICS

An Introductory LOGO Teach1ng Sequence

LOGD Teach1ng Sequence on Log1c

'SLOGO Reference Manua]

OFFiCE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRO-:
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-

!
{ |
!.S. DEPARTMENT OF HEALTH, \
EDUCATION & WELFARE]]
o
1 |
i

. INATING IT. POINTS OF VIEW OR OPIN- 1. -
Ry L i IONS STATED DO NOT NECESSARILY ‘
B REPRESENT OFFICIAL OFFICE OF EDU- :
CATION POSITION OR POLICY. i

Volume 1

- PROGRAMMING-LANGUAGES AS A CONCEPTUAL

ED057579

FRAMEWORK FOR TEACHING MATHEMATICS

Final Report on the second fifteen
;i months of the LOGO Project

Wallace Feurzeig
George Lukas
Philip Faflick
Richard Grant
Joan D. Lukas
Charles R. Morgan
Walter B. Weiner
i Paul M. Wexelblat

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

§ | 30 June 1971

i

Submitted to:

National Science Foundation
Office of Computing Activities
1800 G Street, NW

Washington, D. C. 20550

Contract NSF-C 615

2

Report No. 2165 Bolt Beranek and Newman Inc.

CONTENTS

Volume 1

An Introductory LOGO Teaching Seguence-

LOGO Teaching Sequence on Logic

LOGO Reference Manual

Volume 2

LOGO Teaching Sequences on tumbers
and
Functions and Equations

‘Volume 3

LOGO. Teaching Sequences on
Strategy in Problem-Solving
and)
] Story Problems in Algebra

Volume 4
The LOGO Processor

A Guide for System Programmers

PREFACE

This is the final report of work under Contract NSF-C 615,
"Programming—Languages as a Conceptual Framework for Teaching
Mathematics." 1In earlier directly-related work, supported by
the Office of Computing Activities, we advanced the thesis that
mathematics could be developed and presented in the framework of
programs, and that this kind of presentation would greatly
enhance teaching and learning. Using the LOGO programming
language designed expressly for this purpose, we tested this
thesis in both elementary and junior high school mathematics

classrooms, obtaining the excellent results we had anticipated.#¥

The teaching materials used in this earlier work were developed
"on the run" to meet immediate class needs. These materials
were, therefore, unconnected or loosely connected segments of
partially realized designs. The focus of this phase of the work
was on classroom experimentation and testing, not on curriculum
development. It was clear to us from the outset, however, that
extensive curriculum material would eventually be needed. The

object of the work reported here is to take the first steps in
the development of such materials.

For this purpose, we have developed five extended LOGO teachi.iz

sequences and an introductory LOGO sequence. These range over a

e e et st b A AR

variety of elementary mathematical subjects, levels of difficulty.

and mathematical and pedagogic style. This diversity is inten-
tional. We want to illustrate the scope of this new approach to

mathematics and its general accessibility to teachers and
students.

¥"Programming-Languages as a Conceptual Framework for Teaching
Mathematics,”" Final Report on the first fifteen months of the
LOGO Project, Wallace Feurzeig et al, Nov. 1969.

The repcrt is composed of four volumes. Volume 1 contains a
reference manual on the LOGO language and two of the LOGO teaching
sequences. The short introductory sequence, on teletype geometry,
is one of many good starting points for studying LOGO. The LOGO
sequence on logic is by far the most a’—-anced of those presented
here. In it we develop a sophisticated ability for dealing with
syllogistic~-type arguments. The sequence demonstrates that an
extremely complex set of procedures can be evolved in a natural

way .

Volume 2 includes two LOGO teaching sequences treating some
standard mathematical topics -- on the representation of numbers
and the algorithms of,arithmetic, and on functions and equations
—= but inccrporating the new viewpoints made possible by the use
of LOGO programs. The sequence on numbers is the most detailed
presentation of the seriles in accordance with its mathematical
content. Their content and level of difficulty makes these two

sequences well-suited for incorporation into existing curricula.

Volume 3 is comprised of two LOGO teaching sequences on "problem-
solving". One deals with the generation and testing of methods
and strategies. The other treats the problem of translating
between different representations, both formal and informal.

The first sequence uses a variety of. mathematlcal contexts; the

second uses the context of story problems in algebra.

We do not regard the teaching sequences as literal teaching
prescriptions. Rather, we designed them as exemplary materials

to acquaint prospective teachers with the rich mathematical and

' pedagogical possibilities inherent in the use of LOGO. The

sequences are intended as source materials for assisting teachers

in thelpreparation of courses. We think the presentations will

i o e et e

i e S

B G R K h Ry

be useful in providing teachers general guidelines around which

to make their own variations and extensions.

Volume 4 of this report stands apart from the other three. It

contains a detailed description of the LOGO processor algorithm.

Tt was written for system programmers and others interested in

the details of LOGO's inner workings. It will facilitate the

implementation of LOGO on computer systems of many kinds.

The main authors of the material in this rebort are Wallace
Feurzeig, George Lukas, and Richard Grant. Philip Faflick made
major contributions to the number. and strategy sequences. Joan
Lukas is a co-author of the logic sequence. Charles k. Morgan
contributed both to the curriculum material and the LOGO system
programming and documentation. Primary work in the latter area
was done by Walter B. Welner with the assistance of Paul M.
Wexelblat. The demanding technical typing and drawing tasks
were directed and performed by Pearl Stockwell.

iii

Volume 1, Part 1

AN INTRODUCTORY LOGO TEACHING SEQUENCE

The LOGD Project
NSF-C 615

Wallace Feurzeig
George Lukas

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Mass. 02138

AN INTRODUCTORY LOGO TEACHING SEQUENCE

We introduce students to LOGO by developing some procedures
for making pictures, specifically "geometric" figures, on a
teletypewriter. To begin with, we write procedures like the

following, for drawing a rectangle:

TO RECTANGLE

1 PRINT "44+++"

2 PRINT "++++""

3 PRINT "4+++") g
END

To use this procedure, we simply type

RECTANGLE

{When we use a procedure we will underscore our typing

to distinguish it from the computer's response)

and LOGO responds:

+4 ++

++++

++++

But this kind of procedure is pointillistic -- the figure is
being spe01f1ed p01nt by point. To improve upon this, we can

write procedures for drawing line segments of spec¢f1ed length
to serve as building blocks for drawing a number of different
kinds of figures. For example, the‘following procedures:

-1-

TO 1+ L TO 3+

1 PRINT "4+7 1 PRINT "+4++4"
END _ , END)
TO 2+ TO 4+
1 PRINT - "++" 1 PRINT "4444"
" END END

type segments of a single + mark, 2 + marks, 3 + marks, and
4 + marks, respectively.

These procedures are immediately used as parts of other, more
interesting procedures for drawing figures of fixed shape and

size. For example, we can describe a twc--by-four rectangle,

TO RECTANGLE
1 4+
2 L+
END

To draw the rectangle, we type:
RECTANGLE

+4++

+4+++

‘To make a larger rectangle we write:
" L

TO BIG-RECTANGLE -

1 b+ s . ~ (draw a row)
2 BIG-RECTANGLE " (and repeat the process)

.END

'1 g o : | ~;iQ9

s

i A

oy

This procedure will go on indefinitely:

BIG-RECTANGLE

++++
++++

e+

++++
++++
++++
++++

until we forcibly stop it, using the teletype "break" key.

To make a rectangle of specified size, say /N/ rows, Wwe rewrite

BIG-RECTANGLE as follows:

TO BIG-RECTANGLE /N/

1 TEST 1S /N/ 8 (If all rows are
2 IF TRUE STOP (Rtop)

3 4y (Otherwise, draw
4 BIG-RECTANGLE (DIFF OF /N/ AND 1) (and repeat

END /N/-1 more

doné)

a row)
the process

times)

This allows us to draw rectangles with any desired number of

rows, for example:

BIG-RECTANGLE 5

++++
++++
++++
++++
++++

We can also write procedures for drawing triangles:

TO TRIANGLE
1 1+
2 2+
3 3+
L 4
END

TRIANGLE

+
++
+++
++++

But we run into difficulty when we try'fd extend this to make
arbitrarily lafge triangles. We can accomplish this, however,
by writing a single procedure MARK /N/ to type out‘any specified
number /N/ of + marks. By varying the input of this new pro-
cedure, we can draw triangles as well as many other regular
figures. -

In fact, we w1ll wrlte two drawing procedq23£7~DLANK /N/ and

MARK /N/. The flrst of these- ypes ‘out /N/ blank spaces; the

second types /N/ £'s and returns the carriage. These two .
procedﬁres are virtually identical in form. Thus, for example:
~ TO MARK /N/ (If there are no more marks to tyy
'1 TEST IS /N/ § S

2 IF TRUE SKIP . ~(skip to the next line)

3 IF TRUE STOP , o {(and stop)

L TYPE "+" : (Otherwise, type a mark)

5 MARK (DIFFERENCE OF /N/ AND 1)(and repeat the process /N/-1
END ‘ .. - more times)

MARK 17

FET SRR RF AT RS R) T Jul

5
S x

_u;

To illustrate the use of these basic procedures, let's write a

procedure to make a little triangle, indented from the left margin.

TO MAKE-A-TRIANGLE
BLANK 1§

MARK 1

BLANK 9

MARK 3 .
BLANK 8

MARK 5 F

ND

mowvi FuwWnNH

MAKE-A-TRIANGLE : R - i

+
B TS
++
This would be a tedious way of describing larger figures. A
con51derable 1mprovement comes about from notlng that iw any'

cases we wish to center all rows of marks with respect to the
same interval. We can ea51ly write a procedure to do this. It
will'typé /N/ marks centered in an interval of length /L/. The
number of spaces it needs to indent before typing is given by
the quotient of (/L/ - /N/) and 2. (We must compute this to the
nearest integer since we cannot half-space on the-teletype.)

~In LOGO this is expressed QUOTIENT OF (DIFFERENCE OF /L/ AND /N/)
AND 2.

Now we can write the procedure MIDDLE /N/, for typing7+'s in the
middle /N/ spaces of an interval of length /L/.

TO MIDDLE /N/

1 BLANK QUOTIENT OF (DIFFERENCE OF /L/ AND /N/) AND 2
‘2 MARK /N/ :
END

U31ng MIDDLE we can now wrlte MAKE-A~ TRIANGLE W1thout worrylng
about spacing.

TO MAKE-A-TRIANGLE
1 MIDDLE 1

2 MIDDLE 3

3 MIDDLE 5

END

MIDDLE has immediate and broad application as a basic procedure
for drawing symmetric figures. To show its utility, let's first

define a procedure for typing a rectangle with /A/ columns and
/B/ rows.

TO RECTANGLE /A/ /B/

1 TEST 1S /B/ @ ' o . (If /B/ has become 0,

2 IF TRUE STOP o o _ stop)

3 MIDDLE /A/ - - (Else type /A/ +'s)

4L RECTANGLE /A/ (DIFFERENCE OF /B/ AND 1) (and repeat the proces:

END | | /B/-1 times)

This procedure executes the_command'MiDDLE /A/ (which types /A/
"centered" +'s) /B/ times. |

RECTANGLE 18 3

R st = S L
R
e Al bt ot

Rectangles are useful as basic building blocks for composing

other figures. Trapezoids are also-useful, particularly for

“building many kinds of polygons. And, they include triangles as

a limiting case.

TO TRAPEZOID:/A/ /B/ (/A/ and /B/ are the lengths of the two b

i MIDDLE /A/ - (Type /A/ centered +'s) ‘
2 TEST IS /A/ /B/ - (If /A/ has become equal to /B/,
3 IF TRUE STOP . "stop). .

4 TRAPEZOID (SUM OF /A/ AND 2) /B/ (OtherW1se, repeat the proce

END P . with /A/ increased by 2):

(the thatvthis procedure closeiy parallels that for»RECTANGLE.)

%f:i‘

6

TRAPEZQOID 3 9

+++
+4++++
+++++++

R RS

TRIANGLE is the limiting case of TRAPEZOID, with /A/ = 1.

TO TRIANGLE /N/
1 TRAPEZOID 1 /N/

END
i
TRIANGLE 7
+++
R e k. S
B

Though the TRAPEZOID procedure can be used to draw trapezoids of
different sizes, it can only'draw trapezoids_with the same interior
angles, because successive rows increase in width from a smaller

to a larger base by a fixed step. 'TRAPEZOID can be generalized

in a very straightforward'way to lincorporate a larger class of
trapezoids. All we need do is include the Step-size increment

/STEP/ as an input. Doing this, the definition becomes,

-TO TRAPEZOID /A/ /B/ /STEP/

1. MIDDLE /A/ .

2 TEST IS /A/ /BY

'3 IF TRUE STOP

4 TRAPEZOID (SUM OF /A/ AND /STEP/) /B/ /STEP/
END

(The only changes have been the 1nclu31on of /STEP/ in the title

- line and in line 4.)

-~ Now we‘can drawltrapezoids Withﬂrelatively big_slopes;

TRAPEZOID 4 28 6

++++
+++
e N
e e S T
I ot = ST 0 A TS SR SRS

We can also draw "upside-down" trapezoids by using negative
increments.

TRAPEZOID 13 5 -2
++++ ettt
R
++t++t
++t+
+++++

It is possible to specify values of /A/, /B/, and /STEP/ that do
not prdperly defihe a trapezoid. For example, if the top base
is to be 8 and the bottom base is‘to be 3, with step size +1,
the drawing-process will never terminate by itself. The procedure
TRAPEZOID can eaéily be mcdified to check for this and all other |
nonterminating cases. Discovering and fixing such difficulties

provides good problems for the students as a natural side-effect
of their own work. ’

The power of the_procedures we'have just defined i1s evident from
the ease with whiCh we can use them to draw a large variety of
other figufés. Thus, a HEXAGON can be built from two trapezoids;
a DIAMOND from two triangles; a PENTAGON from a twape201d and a
triangle; an OCTAGON from a trapezold, a rectangle, and another

ﬁtrapezoid; and SO:OD. For example, this is a procedure for draw-
Eing‘hexagons, where /A/ is the starting width and /B/ is the
mid-width. : ’ | |
~ TO HEXAGON ./A/ /B/ /STEP/

1 TRAPEZOID /A/ /B/ /STEP/

.2 TRAPEZOID (DIFFERENCE OF /B/ AND /STEP/) /A (- /STEP/)
END : ,

10
_.v:-8--ﬁ

§ Here are examples of figures made by such procedures.

HEXAGON &4 16 4

e
Rl o A
s
R b o S S U R
R R S S
R s
+44++

PENTAGON 5 9§ 2

+++++
++++
+b bbbt
4 +++4++++
i +++++
+++
+

'DIAMOND '7 2

+.
B +++
'k ' . +++++
; ' S
+++++
+++
+

‘OCTAGON 4 12 4

e+t
+++++++t
Bt R S
+++++td b+
+4++++++H+++
+++ b+t
‘++++:

These flgure draw1ng procedures can themselves be used as
~.constructlon elements.; For example we can stack figures

’together to form towers such as. the follow1ng one formed by
?hexagons of 1ncreas1ng slze. '

runtox proviaed oy ervc [N

HEX-TOWER & 8 3

W R

END

e+t
+++++t
+++tEtE
+++++t
sttt
+++++++ b
+++t+t ettt
XTI T RS
+ttr bttt ettt
IETITT IS RS L L 2
++trrr bttt bt
IZTIT IR Y Y
+Err bt d
++trt bt
IR R L R LY
YIS I I T I RS X L2
+++ttt et b ittt
+++ et bbbttt
++++++++++++++++++++++++
++tttttr bbbt bttt bttt
T e A L R S Rl
N e 2 T XIS L S S L L 2
/++++++++++++++++++++++++++++++++
N L 2 2L T IS E ST S S S D 2 4
e LIS TS IS S S L L L
++ b+ttt bttt bttt bttt
P Y L2 T X
P L S o 2
++++ ettt bttt r b+
++ bttt bbb bbbttt
+tttr bttt e+

The LOGO procedure for generating this kind of tower follows.

(Note how similar it is in form to many previous ones.)

TO HEX-TOWER /A/ /B/ /NUM/

TEST IS /NUM/ @
IF TRUE STOP
" HEXAGON /A/ /B/ 2

‘Q"HEX TOWER (PRODUCT OF 2 AND /A/)D

. (PRODUCT OF 2 AND /B/):
:(DIFFERENCE OF /NUM/ AND 1)

(/A/ and /B/ define the t0pmost
hexagon, /NUM/ is the number of
hexagons in the tower)

(Draw a hexagon of dlmen51ons

/A, /B/, 2)

(Increass the hexagon size and
repeat. thu-process (/NUM/ - 1)

 ‘ tlmes)

| 'ty

- -10-

An interesting way of generatiing more complex symmetric structures
is by using a random procéss to determine the constituent figures
and their sequencing. We can develop a LOGO program, PATTERN
/NAME/ /NUMBER/, to do this. PATTERN creates a drawing program,
whose name is /NAME/, which uses /NUMBER/ figures to create a
pattern that 1s symmetric about the horizontal as well as the
vertical. Here, for example, are two especially nice LOGO

procedures created by PATTERN, along with thelr resulting drawings.

PATTERN "TOTEM" 5

TO TOTEM

1 DIAMOND 3 2

2 TRAPEZOID 9 3 -2
3 HEXAGON 5 25 L4

4 TRAPEZOID 3 9 2
5 DIAMOND 3 2
END

TOTEM

+
TR
+
T T
FHEEE
FUFR
++e+
++ete
T TR R
PP PO Y ey
O S e L
FPEFFEE PR b4
O Y YT T 2
N T I T 2
O A P PP S
T IE I EE Y L
T I T XY
FUPPRP
+++ .
+EEEE o . Ty
YT TN
T T
++4
+

18

i

PATTERN "FIGURE-12" 3

TO FIGURE-12

1 TRIANGLE 11 2

2 HEXAGON 15 31 &
3 TRIANGLE 11 -2
END

FIGURE-12

+
+++
++et
++++++ 4+
+Ht+rrEeS
+++ttr bt
++t bt bttt b+t

BET TS RIS S R L 2

XIS RS IS L 2 2 2 4
IS I T PR S 22 2 S L L
R s T XTI P SR RS R LS L R L L
+rtrrr it bttt bbb bbb+t

+rr ettt bbbttt bbbt bbbt

eI TR L L L L

PPN PP

TS Y 2)
+rtdrrEt
X EITEY
+++++
+++
+

Using the procedures written thus far,pthe student can geherate
a large number of-different‘geometric shapes, and the writing of
such a sequence ofnprocedures represents a considerable achieve-
ment on his part. The foundations of geometry,‘however, lie in
the'transformation of geometric objects, not merely in‘their'
pOrtrayal. Our‘next goal, then, is’to write procedures for
performlng standard transformatlons of geometrlc llgures. Such
transformatlons include translatlon rotation, and reflection,

both w1th respect to a glven p01nt and with respect to a given

19:

-12-

line. Frocedures to generate the union and intersection of the
sets of points defining two geometric objects are also useful.
And we need a procedure DRAW which plots any given set of points.

To write these procedures we need a different representation for
ghbmetric objects, one which can be retained within the computer.
(Clearly we do not have such a representation thus far —-- our
current objects are generated and drawn one line at a time.)
Perhaps the simplest such representatlon is a list of pairs of
numbéfs, each pair representing one point of the object. Then

it is easy to write procedures, such as the following, which
reflect a set of points about the x-axis. ’

TO REFLECTX /PAIR LIST/ : (/PAIR LIST/ is the list of X Y
. number pairs)

1 TEST IS /PAIR LIST/ /EMPTY/ (Are there any points left on

2 IF TRUE OUTPUT /EMPTY/ /JPAIR LIST/? If not, terminate

procedure)
3 OUTPUT LIST OF

FIRST OF /PAIR LIST/
NEGATIVE OF SECOND OF /PAIR LIST/ v
REFLECTX OF (BUTFIR3T2 OF /PAIR LIST/D
(Otherw1se, output a list of the
X coordinate and the negative of
the Y coordinate of the first
number pair on /PAIR LIST/, and
REFLECTX dpplied to the pair list
: obtained by deleting the first
END v - number pair on /PAIR LIST/)

Thus for example:

PRINT REFLECTX OF "1 2 4 3 7 11 2 -1".
1 -2 & -37 -11 2 1

Uslng th1s and two similar procedures, one for reflecting about
the 45 degree line through the origin, and the other for refleov
ing about the Y-axis, we can now write a procedure fOr ranuom o

generatlon of flgures haV1ng elghtfold symmetry

| 2{0;1'

13-

TO EIGHTFOLD /N/ (/N/ is the number of pairs on the
pair list that will be. generated)

1 MAKE "PAIR LIST'" RANDOMLIST OF /N/

L (Generate a random list of /N/

pairs, /PAIR LIST/)

2 MAKE "PAIR LIST"

UNION OF (/PAIR LIST/D AND (REFLECTW4S5 OF /PAIR LIST/)

(Form the union of /PAIR LIST/ and
the pair 1ist formed by reflecting
it around the 45 degree line, and

. ‘'make this the new /PAIR LIST/)
3 MAKE "PAIR LIST"

UNION OF (/PAIR LIST/)D AND (REFLECTY OF /PAIR LIST/)D

(Form the union of the new list ‘and

its reflection about the Y-axis)
4 MAKE "PAIR LIST" '

UNION OF (/PAIR LIST/) AND (REFLECTX OF /PAIR LIST/)
(Do the same with the resulting list
‘ h . and . its reflection about the X-axis)
5 DRAW ORDER OF /PAIR LIST/ "+" '
] ' ' (Put the resulting pair list in
lexicographic order and plot it
_u51ng +'s)
END :

EIGHTFOLD genefates random drawings such as the following.

+ + , + - *

+++ _ : + o+ + +
s : |
++ ++ , + o+ + + + +
++ . ++ + ' +
++ ++ ’
.+ .
+4+ : : . + . +
' + +
+ +
+ 4+ + + +
+ o+ + .+
+ +

{Uslng such baslc transfowmatlon proceuures we can study general
Euclidean transformatlons For example,.we can develop methods

for determlnlng whether two randomly - orlented polygons are

'°lmcongruent Proceeding in this" fashlon we steadlly progress from

pre—mathematlcs to materlal ot genulne mathematlcal content

21

‘_1§;

Volume 1, Part 2

LOGO TEACHING SEQUENCE ON LOGIC

Teacher's Text
and

Problems

The LOGO Project
NSF-C 615

‘W_JOan‘D.‘Lukas
~ George Lukas k

% 50 Muulton Street -
Qambridge, Mass. 02138

~Bolt Beranek and Newman 1HC¢

CONTENTS

0. Introduction
1. Formal Background . . . ; e e e
2. Generalization of Lewis Carroll Diagrams

Generating Logic "Diagrams" .

4., Marking the "Diagrams"
5. Diagrams and Premisses
6. Testing Syllogisms
7. More General Statement Forms

8. Generalizing Our Syllogism Tester

Problems

23

Page

18

. 20

28
36
4o
47
49

LOGO UNIT ON LOGIC
0. Introduction

Syllogisms formed the central core of logié until they were
pushed aside by the development of mathematical logic in the
Nineteenth Century. We have chosen to focus on them here because
they are accessible without a great deal of formalism and because
syllogistic types of argument occur frequently in everyday
discourse.

This section develops a set of LOGO procedures which test the
validity of syllogistic arguments. LOGO is peculiarly suited

for such an application becausé of its non~numqrical capabllities
and itsrprocedure—oriented programming heuristic. Algorithms in
everyday language are>first developed for each part of the rather
extensive syllogism tester; the translation -of these into LOGO
brocedures follows in a Véry'natural manner. The method or
testing syllogisms used is an adaptétion of the one presented .

by Lewis Carroll in his book "Symbolic Logic™".

The ideas underlying this section and the related background in
symbolic logic were provided by Joan Lukas. George Lukas
1mplemented this treatment in the form of LOGO orocedures Zoth:

shared in the actual writing.

i
« A

1. Formal Background

Many of the inferences made in both formal and informal reasoning
concern the relations among classes of objects. We may say, for
instance, that computers can't think since computers are muchines
and machines can't think. While one may dispute one or the other

of the premises, the structure of this argument is unassailable:

(1) All A are B
(2) All B are C
(3) .. A11 A are C

Once one has accepted (1) and (2), (3) inevitably follows.

If we had made a different statement about the classes, say that
they overlap rather than that one is contained in thé other, the
argument is changed radically. We may not conclude that some
babies are fifty year$ 0ld if we know that some babies are male
and some males are fifty years old. Here the structure of the
argument is

(4) Some A are B
(5) Some B are C
- (6) .. Some A are C

In this case (6)vdoes not follow>from>(ﬂ) and (5).

Statéments whicnnexpréSs relations between classes, such as "All
computers are nachines," and "Some babies are male," are known as
categorical statements. Arguments such as (1) (2) - (3) and

- (4) (5) - (86), whose premises and conclusions are categorical
bstatements are (categorlcal) sylloglsms The study cof such
statements. and arguments and in particular the singling out of

valid forms of sylloplsms is a central concern of class cal logic.

'Categorlcal statements were first studied systematically by
Aristotle who recognlzed four types of such statemencs. One of
these asserts the containment of one class in another -- "A11l
cats are animals" or "It always rains on Tuesday" (which can be
translated as "Every Tuesday is a day when it rains"). By negat-
ing such a statement, we obtain a second type "Not all cats are
animals" or "It doesn't always rain on Tuesday".

A third type of statement asserts that two classes have nothlng

in common: '"No cats are dogs" "It never snows in August.

Note that this statement is not equivalent to the statement above,
i.e., "It never rains on Tuesday" 'is a stronger assertion than

"It dcesn't always rain on Tuesday." The fourth type. of statemeht
asserts that two“classes do have something in common: "Some cats
like milk" (or "Some cats arerthiﬁgs that like milk"). '

The meaning of these'types of'statements3 and the relations among
them, can be made clearer by a dlagrammatlc representation.
Consider the statement ”Some cats are animals'". We can imagine -

tne universe partltloned 1nfo two classes -- cats and noncats.

CATS

NopnN-chTs|

The universe can also be divided into animals and nonanimals.

_ I NoN
WNI= | ang-
MizLSI™mALS

e e e o e e Pt s e s L s o

Lewis Carroll devised a means of representing the four possible

classes obtained by combining these two partitions

ENTS| chts
AN 30
Ay NO~ -

AN RS
MNON=| NEN-
cavs| <oTS
20

BIND | e e
FrOMAHLN AN AL S

and using markers to indicate the existence or nonexistence of
members of each class, as follows. An x in a region 1ndlcates
that the condition represented by that reglon is never satisfied,
while a e indicates that there are some objects (at least one
object) which fall into the class. " Thus, in'tne diagram above,
an X in the upper right region indicates |

. s o
R IV INTIVE P

I coTs ' X

/ . NN~ DTS

that there are no cats which are not anlmals and a ® in the uoper

left reglon indicates that there are cats whlch are animals.

Slmllar diagrams can be used for any two classes A and B. If

the rlght hand side represents A, the left not(A, the upper-half
B, and the lower not B, we get

S

TR | i (e

Ner 1“ B

n?* 8, nq‘l’ n,
B8 net B

Then, "Some A are B" can be represented by

"Some A are not B" by

"No A are B" is represented by

4

.In draw1ng the dlagram correspondlng to the statement "All A are
B", we- have to rnake a decision. . It is clear that, if all A are B
then no ‘A are not B. So the‘dlagram should have an x in the

upper rlght reglon

T
- N h

Is this- the complete diagram for the statement or doe it also

1mply th L there are some A's wh1ch are B's, ‘so that a'e would
appear in the upper left region? ' ' '

® X

N A

"The circle seems to be appropriate because, if a1l A's are B's,
'than.certainly some A's are B's. A dlfflculty arises, however,

- when we consider the poss 1b111ty that there might not be any A's

at all. Then "All A are B" might be taken as vacuously true.

But, "Some A are B" would be false, since it 1mplles the eX1stence
of A's. ‘

Consider, for example, the statement "All round squares are pink."
In most’circumstances we would dismiss this statement as nonsense
“on the ground that there are no round squares and so there is no
_p01nt 1n saylng anythlng about them.‘ Ir we were forced to asslgn
a truth value to- the statement we might 1nterpret it to mean ,
both that round squares exist and every one of them is plnk. Under
_th1s 1nterpretatlon the statement is false. Alternatively, we
7m1ght rule it to be vacuously true since it assertsfthat the
class of round squares is contained in the class of p1nk Oobjects
and since the class of round squares 1s empty, it is contained in

every class.

s pseo e

In mathematics a statement of the form "All A gare B" is usually
not taken to imply the existence of A's. We can talk meaningfully
about the class of counter examples to Fermat's last theorem#*
without knowing whether any such counter examples exist. In

ordinary language, however, this view can lead to absurdity. For

‘instance, we would not want to accept the statenient "All pink

elephants are two feet tall" as true merely on the ground that
there are no pink elephants. So we will take the diagram for
"All A are B" to contain both an X in the A,not B region and a

8 in the A,B region, théftis, the statement is taken as implying

both "Some A are B" and "No A are not B",

In the study of categorical syllogisms, we are concerned with
three classes of objects rather than two. The Lewis Carroll

diagram is extended to three classes by dividing it into an

inner square and an vuter region, the inner square represeriting

the third class, C, and the outer region the complement of this
class, not C. |

"B W A, noY B
net C not C

A,B,lA, D

C
nok B,|no¥ A,
8,¢c |retiB
P c‘
not A, net @,
38, ne¥ < not B,

L

Fermat's last theorem asserts that there are no integers X, Y.,
2, and n with n>2 satisfying the equation xN+yN=zn,

30

—6=

The diagram correspondlng to the statement "No A are B" now
becomes

X

and "No B are C" has the diagram

Clearly, two regions are excluded i each.case.

} heé statement "Some A are B" 1is now more dlfflcult to diagram.
It does not tell us whether the A-B objects belong to C or to
»ltS complement We 1nd10ate this . uncertalnty by placing the
circle on the line dividing the two reglons A,B,C, and A,B,not
It is "81tt1ng on the fence"

Further statements may tell us“which region the circle belohgs in.
For instance, "No B are C" would eliminate the inner region and
force the circle into the upper left corner.
ing from these two statements is

The diagram result-

- We have 1nterpreted "All A are B!'" to mean both "No A are not B"

“and- "Some A are B" 's0 the correspondlng dlagram is

We can now use these dlagrams to check the valldlty of sylloglstlc

arguments. A sylloglsm 1s ‘valid if the premises imply the con-
clusion. In terms of dlagrams this means the dlagram obtained
by comblnlng the premises contains x's and e's. wherever the

.conclusion's diagram does. The first syllogism we d1scussed was

(1) All computers are machines
(2) Machlnes can't think
(3) Computers can't think

‘which was formalized as

(1) A1l A aré B
(2) 'All Bare C
(3) . AIT & are ©

the class of computers.
‘the class of machines _
: the class Of things that can't think.

by setting A
B
C

nn-n

‘Note that we have made expllclt the "all“ wh1ch was 1mp11c1t 1n

‘the statements -and rewrltten the second ‘as "All machines are-
'fmthlngs that can t thlnk" -_Thls 1s the usual procedure in- treat-

'f*ng sylloglsms formally . If the verb in a statement 1s dlfferent"

from "are" or "is", we translate the predicate into the form
"are things that __ ", e.g., "Birds fly" becomes "Birds are
things that fly". We treat all statements in syllogisms as being
about classes rather than about actions. If we form the diagram

MACHINE S
NOT MRCRHINES

L, N THINGS <THPT
CcON'T] THINK

COMPODTERS

TethhNG S
TiuDdT

- €EpiN’T
NOTY THpNK
CoMPOTERS ?

(1) becomes P and (2) is

BRI

When these two dlagrams are comblned the X in the upner left corner
forces the 01rcle 1nto the center square

~. ‘ . | -10- -

S P

o

R

The combined diagram becomes

X X
- (The lower circle
‘)< does not add any

information to
the diagram)

The conclusion of the argument is "All computers are things that

~can't think" which has the diagram

X | %X

_Fdr this to be implied by the premises’ the premises must give an
~ X in the indicated places and a @ in one of the two reglons which

1ntersect the circle in the dlagram (or a circle intersecting
both) .As the comblned dlagram doe% satisfy these requlrements,

‘this sylloglsm is valld

The same argument might be cast more naturally in a different
syllogistic form if we make A = computers, B = machines, as
before, but C = things that ean think. Now statements 2 and 3
are replaced by (2') No machines are things that can think

(3') No computers are things that can think.
The form of the argument now becomes

A1l A are B
No B are C
* No A are C

If we row construct the diagram as'follows:

MACHINES U
NOT MACHINES

NOT THINGS THAT
. AN THINK
COMPOTERD
THUNGS
T AT
- LYY
THIINK
. NCOT
C OMPeTERS
(1) is represented by) and (2') by

X

o-l2-

The combined diagram is

® | X

X

The diagram of (3') is

The sylloglsm is valld since the combined dlagram does contain x's
: in the two 1ndlcated places.

1

Our second syllogism was

(4) Some babies are male
(5) Some males are fifty years old
(6) 7. Some babies are fifty years old

This has the form

Some A are B
Some B are C
.« Some A are C

where A is the class of babies, B the class of males, and
C the class of fifty-year-old people.

The diagram is

MDLE . NOT ™MALE
NOT FileTY YEARS
‘ o oLD.
BARIES
FRTY
1. Y€larRsS
: e|tD
NOT BABIES
(4) is represented by o and (5) by

.;T.

The combined diagram is

The diagram for (6) is

For the argunént to be valid

the comblned diagram must contain
a circle in one of the two areas whlch 1ntersect ‘the 01rcle in
(6) or a circle intersecting both. This is not the case. In

fact, the combined dlagram is con81stent w1th '

which does not satisfy the conclusion.

Some inferences Which contain statements about particular objects
rather than classes can be treated as categorical syllogisms.
For example, ‘

John is a boy

All boys like ice cream

“ John likes ice cream

can’' be formalized as

All A are B
All B are C
.. All A are C

if we take A to be the class consisting of the single object
"John", B the class of boys, and C the class of people who like
ice cream. '

An argument with a partlcular premlse whlch is 1nva11d is

John likes ice cream : : :
Some people who like ice cream are fat
. John is fat

taking A = "John" as before
: B = people who like 1ce cream,_
C‘= fat people. ’

~16~

This argument can be put in the form

All A are B
.Some B are C
.. A1l A are C

(Here we are using our knowledge that "Johnﬁ usually refers to a
persoﬂ rather tkkan a dog or some other thing.) '

This ﬁyllogism can be seen to be invalid by constructing the

Lewis Carroll diagrams for these three statements.

A syllogism is valid or invalid because of its form, not because
of tne truth or falsity of its premises and conclusion. For
1nstance the syllogism

All cows are things that fly
All things that fly are birds

.« All cows are birds

is of the form All A are B
-All B are C.
All A are C

and hence valid, élthough its:premises and conclusion are all

false,

On the other hand, Some people are men
Some men have beards
.+ Some people have beards

is of the form Some A are B
Some- B are C
.» Some A are C

which is an invalid syllogism, even though its premises and

conclusion are all true.

A sYllogism‘Of a given form is invalid if it 1s possible to

produce -another syllogism of;thé:same form with true premises
and .a falSe conclusion. One can prove a sylloglsm invalid by

generating counter—examples in this way.

i*
- 7

Syllogistic arguments play a very important role in reasoning but
are usually not stated explicitly in the forms discussed above.

2. Generalization of Lewis Carroll Diagrams
}

It is possible to extend Lewis Carroll diagrams to relations

among four or more classes, so that we might treat extended
syllogisms such as:

Some people are babies.

All babies are young animals.
All young animals are delicate.
~..Some people are delicate.

However, when the diagrams are thus extended, they lose their

transparency. The feature which makes them especially useful for

the three plasses of ordinary syllogisms is the fact that an 0
"sitting on the fence";actually overlaps contiguous areas. This

is not always p0331b1e for dlagrams rmpwesentlng a larger number
of classes. ' : K '

For a generaliéedeyllogigm, which may contain a large number of
classes and premgses, we Will replace the Lewis Carroll diagram
by 'a linear array, simply a list of all possible combinations of
classes and class ﬂomplements. For example, the 1list for twd
classes, A B, is: : '

A B

A not~3
not-A B
not-A not-B-

The list corresponding to three classes has eight entries and the
list for four classes has sixteen. The markers which were used
in the Lewis Carroll diagrams are now placed next to the corre-
sponding entries in the list. Thus, we represent the statement
"no A are B" by placing an X next to each entry in the list
containing A and B unnegated. |

e.g., A BZC X

A B not-C X

The statement "sc e A are B" was previously represented by a
circle on the fence between the regions A, B, C and A, B, not-C.
Now the regions have been replaced by entries on a list with no
topological significance. Further, there may be more than three
classes, so that the statement above might refer to several
entries, e.g., A B CD, ABC not-D, A B not-C D, and A B not-C
not-D. We need a new nongraphicalbnotation to represent this
situation. We can put a marker, say 1, next to each entry
‘representing a class with A, B unnegated. In the above example,
~each of the four entries given would receive a "1". TIf another
statement, say "some B are not-C", put another 0 "on the fence",
we might use a "2" to indicate each class intersected by this
new 0.

- The increase in number of classes also forces some operational
changes. In the Lewis Carroll diagrams an O on the fence always
~intersected exactly two regions. If a later statement put an X

in one of the resions, the 0 was-autométically taken off the fence
.and placed in-the other region, since there was no other possibil-
ity. This is no ionger the case when a "fence" joins more than
~two regions.’ In the above example, if.an X were placed next to

A B C D (say by the statemént "no C are D"), the 1 next to this
entry would be eliminated, but three 1's would still remain.

19

Thus, the 1 is still on the fence. It is not replaced by an O

unless a single 1 remains on the list.

3. Generating Logic "Diagrams"

We are ready to translate the processes involved in the use of
generalized Lewis Carroll diagrams into the form of computer
programs. There are four major parts to this undertaking. First,
in this section, we will discuss the creation of generalized
diagrams, given a list of objects. Then we can write procedures
which "mark" diagrams to represent the statements given as their
input. Once this is done, and a diagram representing the set of
all premisses is made, we can then test the validity of a further
statement with respect to these premisses. Thesc three preceding
steps, in fact, create a complete, consistent structure. Such a
structure, however, will only accept statements and objects in a
rigidly standardized form. Our fourth and last step will be,
therefofe, to write a set. of procedures which enable us to deal
with a more "relaxed" set of statements and objects.

We have seen how the Lewis Carfoll diagrams can be generalized,
by simply making a list of the names of the regions, without plac-
"ing ahy topological interpretations on such a list. The "contents"
of eachAregion can then be denoted simply by associating these
with the appropriate name. This is done most simply by making
the contents the THING of the region name. The 1list of region

names 1s best written as a LOGO sentence witii' commas (or some

other demarcation) between the names. In that way, we can still
use sentences for region names. This convention does not permit
the individual objects within a region name (NOT GREEN CATS, for
example) to be sentences, but, rather than use another symbol as
a further level of demarcation, we will make these objects into
LOGO words by putting dashes in place of the spaces within them.
(NOT GREEN-CATS, for example). Thus, if we are given a set of
obJects we first insert dashes in each:

TO DASH /OBJECT/

18 TEST WORDP /OBJECT/

2¢ IF TRUE OUTPUT /OBJECT/

3¢ OUTPUT DASHSENTENCE /OBdECT/
END »

'TO DASHSENTENCE /SENTENCE/

14 TEST IS COUNT /SENTENCE/ 1 »

2@ IF TRUE OUTPUT FIRST /SENTENCE/ (If there is just one word
; - in /SENTENCE/, we get this:
' , remaining word using FIRST)
»Bﬂ OUTPUT WORD WORD : ‘

FIRST /SENTENCE/

1m_n

DASHSENTENCE BUTFIRST /SENTENCE/
END

<PRINT DASH "IS A MAN"
IS-A-MAN. o ‘
<PRINT DASH "ARISTOTLE"
ARISTOTLE ’ :

P

S
‘The really important task, at this early point, is construction
of the region name list. We will. have a list of objects, each
of which is a LOGO wc:d (we ensure this by using DA SH) The
v'procedure REGIONLIST taxes /OBdECTe/ as input.and: outputs the
»llst of a¢1 poss1ble comblnatlons fcach contalnlnr every ob tct

45t
o =21-

or its negation (NOT-object). These possibilities are to be

separated by commas. Let us consider an example where the objects
are taken as A, B, C and we place each 1% bsibility on a separate

line.

A B C

A B NOT-C
A NOT-B C

A NOT-B ‘NOT-C
NOT-A B C
NOT-A B NOT-C
NOT-A NOT-B C ,
NOT-A NOT-B NOT-C

There are a number of ways to systematically generate this set

of combinations. Furthermore, the result of each method can be
looked at in different ways, depending on theﬂpatterns one sees
in the result. The scheme used in the example above was to find
all possibilities, changing the rightmost character (1 Lnes 1, 2),
50 repeat these poss10111t1eo, having changed the next character
(lines 3 and 4), and so on. This process is very remlnlscent of
counting, if one thinks of ar automobile odometer, for example
and there is, in fact, an equivalence between the scheme used and
counting in binary mode. Countlng to base 2 is governed by the
rules 0+ 0=0 0+ 1=1+0=193and 1+ 1 = 10 where "carrying"
is eXactly as in base ten. Thus, putting zeros in front of the
binary numbers (to give 3!digits)'as we count from 0 to 7,

éoo
01
010
011
100
101
110
111

The zeros and ones exactly reproduce the pattern of "NOT"s and
absence of NOTs if we make the correspondence 0O<—>absence of NOT
1<—NOT.

" 48

-22-

Thus, counting in binary (which is very easy to program) gives
us the pattern we need for our combination_generating prob.lem.
To get the region name 1list for /N/ objects we need only count

from Q0...0 to 11111...1 in binary, then use each number to create

a region name, using the correspondence given above. Thus, we
write a procedure, which, given a binary number, outputs the next
binary number.

TO BINARYNEXT /NUMBER/
1§ TEST EMPTYP /NUMBER/
2¢ IF TRUE OUTPUT 1

36 TEST ZEROP LAST /NUMBER/ (If the last digit is zero, just
4§ 1¥ TRUE OUTPUT WORD change it to 1

BUTLAST /NUMBER/

1 .
58 OUTPUT WORD (If the last digit is 1 (the

BINARYNEXT BUTLAST /NUMBER/ only other possibility) change
g it to zero and add 1 to the
' binary number, BUTLAST
END /NUMBER/ .) '

- -~

This wrocess continues until either a zero is found in whicl case
it 1is replaced by a 1, or until the last digit of the original
numbsr has been passed, in which case a 1 is placed in front.

<PRINT BINARYNEXT #d
N

- PRINT BINARYNEXT g1
1

«PRINT BINARYNEXT 11
149

<

We want to start the process with /N/ zeros so,

47

TO ZERO /N/

14 TEST 1S /N/ ¢

2¢ IF TRUE OUTPUT /EMPTY/
3¢ OUTPUT WORD OF

g
ZERO (DIFF /N/ AND 1)
END

«PRINT ZERO "3

geg

“PRINT BINARYNEXT BINARYNEXT ZERO 3
gig

We use thes2 two procedures in two further procedures, one of
which, REGIONLIST, starts things off, and the other, ADDTOLIST,

adds one combination at & iime to the list of region names.

TO 'ADDTOLIST /OBJECTS/ /BINARY #/
1§ TEST GREATERP (COUNT /BINARY #/) ,
(COUNT /OBUECTS/) (If the number of digits in the
2§ IF TRUE OUTPUT /EMPTY/ - binary number exceeds the number

of objects, we are finished)
38 OUTPUT SENTENCE SENTENCE

NOTT /BINARY #/ /OBJECTS/ (NOTT gives the combination of

nou : /0BJECTS/ corresponding to /BINARY #/)
ADDTOLIST /OBJECTS/ : : .

(BINARYNEXT /BINARY#/)
END : .

The procedure NOTT /NUMBER/ /LIST/, which applies the correspondence
between NOTs and a binary number to /LIST/ is straightforward: If
the first digit of /NUMBER/ is f,we leave the first element of

list unchanged. Otherwise, if it is 1, we put a "NOT-" in front

of it. We repeat the process until the 1list 1s exhausted,

43

24

TO NOTT /NUMBER/ /LIST/
1§ TEST IS /LIST/ /EMPTY/. (If the list is /EMPTY/, we are
2§ IF TRUE OUTPUT /EMPTY/ finished)
3 TEST IS FIRST /NUMBER/ §#
L IF TRUE QUTPUT SENTENCE

FIRST /LIST/ ‘

NOTT (BUTFIRST /NUMBER/) (BUTFIRST /LIST/)

54 OUTPUT SENTENCE '

WORD -""NOT-" (FIRST /LIST/)

NOTT (BUTFIRST /NUMBER/) (BUTFIRST /LIST/)
END

*PRINT NOTT "f11'" "DOGS CATS ELEPHANTS"
DOGS NOT-CATS NOT-ELEPHANTS

Now, RLGIONLIST is easy:

TO REGIONLIST /OBJUECTS/

14 OUTPUT ADDTOLIST /OBJEETS/ (ZERO OF COUNT OF /OBJECTS/)
END .

«“PRINT REGIONLIST **A B C"
A BC, ALBNOT-C » A NOT-B C » A NOT-B NOT-C » NOT-A B C » NOT-A B

NOT-C » NOT-A NOT=-B C » NOT-A NOT-B NOT-C »

~PRINT REGIONLIST "CATS DOGS MONKEYS ELEFPHANTS CAMEL S

CATS DOGS MONKEYS ELEPHANTS CAMELS » CATS DOGS MONKEYS ELEPHANTS
NOT-CAMELS » CATS DOGS MONKEYS NOT-ELEPHANTS CAMELS » CATS DOGS MONKEYS
NOT-ELEPHANTS NOT-CAMELS , CATS DOGS NOT-MONKEYS ELEPHANTS CAMELS » CATS
DOGS NOT-MONKEYS ELEPHANTS NOT-CAMELS » CATS DOGS NOT-MONKEYS .
NOT-ELEPHANTS CAMELS , CATS DOGS NOT-MONKEYS NOT-ELEPHANTS NOT-CAMELS »
CATS NOT-DOGS MONKEYS ELEPHANTS CAMELS » CATS NOT-DOGS MONKEYS ELEPHANTS
NOT-CAMELS , CATS NOT-DOGS MONKEYS NOT-ELEPHANTS CAMELS » CATS NOT-DOGS
MONKEYS NOT-ELEPHANTS NOT-CAMELS , CATS NOT=-DOGS NOT-MONKEYS ELEFHANTS
CAMELS ‘5 CATS NOT-DOGS NOT-MONKEYS ELEPHANTS NOT-CAMELS » CATS NOT-DOGS
~wOT-MONKEYS NOT-ELEPHANTS CAMELS » CATS NOT-DOGSNOT-MONKEYS
NOT-ELEPKANTS NOT-CAMELS » NOT-CATS DOGS MONKEYS ELEPHANTS CAMELS ,
NOT-CATS DOGS MONKEYS ELEPHANTS NOT-CAMELS » NOT-CATS DOGS MONKEYS
NOT-ELEPHANTS CAMELS > NOT=CATS DOGS MONKEYS NOT-ELEPHANTS NOT-CAMELS ,
NCT~-CATS DOGS NOT-MONKEYS ELEPHANTS CAMELS » NOT-CATS DOGS NOT-MONKEYS
ELEPHANTS NOT=CAMELS , NOT-CATS DOGS NOT~MONKEYS NOT-ELEPHANTS CAMELS »
NOT-CATS DOGS NOT-MONKEYS NOT-ELEPHANTS NOT-CAMELS , NOT=CATS NOT-DOGS

- MONKEYS ELEPHANTS CAMELS , NOT-CATS NOT-DOGS MONKEYS ELEPHANTS
NOT-CAMELS » NOT-CATS NOT-DOGS MONKEYS NOT-ELEPHANTS CAMELS » NOT-CATS
NOT-DOGS MONKEYS NOT-ELEPHANTS NOT-CAMELS » NOT-CATS NOT-DOGS
NOT-MONKEYS ELEPHANTS CAMELS , NOT-CATS NOT-DOGS NOT-MONKEYS ELEPHANTS
NOT-CAMELS » NOT-CATS NOT-DOGS NOT-MONKEYS NOT-ELEFHANTS CAMELS »

- NOT-CATS NOT-DOGS NOT-MONKEYS NOT-EL EPHANTS NOT-CAMELS , :

-25-
A9

create region name lists. These lists are not easy to work with
directly 4in LOGO Ssince ﬁhe separators of interest are commas, and
not spaces. FIRST, for example, will give us the first element

of the first region name. We therefore write a few simple
procedures which will be useful in working with our new kind of
list.

TO PULL /LIST/ (glves everything to first comma)

. 1g TEST EITHER

EMPTYP /LIST/

IS FIRST /LIST/ ",n
2 IF TRUE OUTPUT /EMPTY/
38 OUTPUT SENTENCE

FIRST /LIST/

PULL BUTFIRST /LIST/
END ' '

TO REST /LIST/ _ (gives everything after first comma)
1§ TEST EITHER . '
EMPTYP /LIST/ .
, IS FIRST /LIST/ o .
28 1IF TRUE OUTPUT BUTFIRST /LIST/
38 OUTPUT REST (BUTFIRST /LIST/)D

END

TO NUMBER /LIST/ (counts "region names" by counting
19 TEST EMPTYP /LIST/ ‘commas -- this is correct since
20 IF TRUE OUTPUT g the list ends with g comma,)

38 TEST IS (FIRST /LIST/) "

49 IF TRUE QUTPUT suMm
1 ‘ :
NUMBER (BUTFIRST /LIST/)

50 OUTPUT NUMBER (BUTFIRST /LIST/)
END :

These procedures ensable us, for example, to”write a éimple procedure
-NICEPRINT to print the list of regions "nicely™ by putting each on
a sBeparate row. To make NICEPRINT eéveén more useful, next to each

region we print its "contents",'given by the THING of the region
name. We have not yet '"marked" any of the regions, so at the
moment, the contents are all /EMPTY/.

TO NICEPRINT /LIST/
1§ TEST EMPTYP REST /LIST/
23 IF TRUE STOP

38 TYPE PULL /LIST/ (TYPE prints but does not go to
Lg TYPE ",n the beginning of the next 1line)
5@ PRINT THING (PULL /LIST/)D :

64 NICEPRINT (REST /LIST/)D

END

*NICEPRINT REGIONLIST *'FRED HARRY JANE SALLY"™
FRED HARRY JANE SALLY,"
FRED HARRY JANE NOT-SALLY,
FRED HARRY NOT-JANE SALLY, ,
FRED HARRY NOT-JANE NOT-SALLY.,
FRED NOT-HARRY JANE SALLY.,
- FRED NOT-HARRY JANE NOT~SALLY.,
FRED NOT-HARRY NOT-JAMNE SALLY.,
FRED NOT-HARRY NOT-JANE NOT-SALLY.»
NOT-FRED HARRY JANE SALLY>
NOT-FRED HARRY JANE NOT-SALLY.,
NOT-FRED HARRY NOT-JANE SALLY,
NOT-FRED HARRY NOT=-UANE NOT-SALLY.,
NOT-#RED NOT-HARRY JANE SALLY.,
NOT-FRED NOT-HARRY JANE NOT-SALLY.,
NOT-FRED NOT-HARRY NOT-JANE SALLY.,
NOT-FRED NOT-HARRY NOT-JANE NOT-SALLY,

-

-27-

%

4. Marking the "Diagrams"

There are two different operations required to represent a state-
ment, or sequence of statements on a diagram, whether it is of
the Lewis Carrcll type or a more general list one. We must be
able to "mark off" regions, by placing X's in them. We do this
by making the THING of the region name "X". We also must be able
to denote occupancy or possible occupancy of a region. If there
is only one available region satisfying the given constraints

in the statement(s), an "0O" is placed within it. If several
regions are possible, they are '"joined" by placing the same number
in the THING of each. Any conflict between 0Os and Xs means that
a contradiction has been found. |

Let us first consider the algorithm required for "joining" or,
in terms of Lewis Carroll diagrams, placing an "O" on the fence.
Wé take each region name and determine whether it contains the
combination of objects and their negation as in the statement we
are joining. For example, given the three objects A, B, C and

the list of € names that they generate, we determine that the
elements A NOT-B are containéd ‘within the two regions A NOT-B C,

A NOT-B NOT-C. We make a list of all such "valid" names, which

do not contain an "X". If there is exactly one such region, we
oceupy it by adding an "O0" to its THING. If there is more than
one region possible, we include the current join.number within the
THING of each. Of course, if no regions are possible, a contra-

dictory set of premisses is involved and we can go no further.

Our first step is to write a procedure SUBSETP, which, given two

sets /A/ and /B/ as inputs, outputs TRUE or FALSE as all elements
of /A/ are or are not contained among those of /B/. SUBSETP in

o2

s

turn depends on CP /EL/ /LIST/ which determines whether a given.
single element /EL/ is contained in a given list, /LIST/.

TO SUBSETP /A/ /B/
1§ TEST EMPTYP /A/

2f IF TRUE QUTPUT "“TRUEY (is the first element of /A/ contained
30 TEST CP (FIRST /A/) /B/ in /B/?)
L IF FALSE OUTPUT "FALSE" (if not /A/ is not & subset of /B/)

5@ OUTPUT SUBSETP (BUTFIRST /A/) /B/ (if yes, continue the process

with the rest of /4/)
END -

TO CP /ELEMENT/ /LIST/

1§ TEST EMPTYP /LIST/ (have we gone through the whole 1ist?)
2¢ IF TRUE OUTPUT "FALSE" (if so /ELEMENT/ is not contained)
38 TEST IS /ELEMENT/ 4
_ FIRST /LIST/
L IF TRUE OUTPUT "TRUEY
5¢ OUTPUT CP /ELEMENT/ (BUTFIRST /LIST/)
END

<PRINT SUBSETP "A B C D" '"'p C B A"
TRUE

<PRINT SUBSETP "PLEAT" "ELEPHANT"
TRUE ' :

We next write: the main procedure JOIN /EZLEMENTS/ /JOIN #/ /LIST/,
and its sub-procedures. JOIN is virtually a line by line trans—
lation of the JOlnlng algorithm just stated.

TO JOIN /ELEMEMTS/ /JOIN #/ /LIST/
14 MAKE '"COMMON REGIONS'" COMMON OF /ELEMENTS/ /LIST/
(maké a list of regions on /LIST/'Wlthout "X"s
; /ELEMENTS/ as subset)
28 TEST IS NUMBER / COMMON REGIONS/ g
3¢ IF TRUE EXIT "CONTRADICTION" (EXIT is a LOGO ‘built--in which
halts execution and causes its

: - input to be printed)
Lg TEST IS NUMBER /COMMON REGIONS/ 1

54 IF TRUE OCCUPY /JOIN #/ (PULL /LIST/)

(if there is. exactly one region, ,
place an "0" within it) - e

s having

64 IF TRUE STOP :

78 INCLUDE /dOIN %/ /COMMON REGIONS/ (otherwise place /JOIN #/ within

B . each of the common regions.)

93

-
-29-

The procedures remaining to be written are COMMON, OCCUPY and
INCLUDE, all mentioned in our description of the Joining algorithm.

TO COMMON /ELEMENTS/ /LIST/
1¢ TEST EMPTYP /LIST/
2@ IF TRUE OUTPUT FEMPTY/
3¢g TEST BOTH o
SUBSETP /ELEMENTS/ (PULL /LLST/) (PULL /LIST/ is the first
NOT CP '"X" (THING OF PULL /LIST/) region name on /LIST/. If

4@ IF TRUE OUTPUT SENTENCE SENTENCE /ELEMENTS/ is a subset of
PULL /LIST/ the first region name ana
ten the region does not contain
COMMON /ELEMENTS/ (REST /LIST/) "X", add the first region

to the output list)

5 OUTPUT COMMON /EL/ (REST /LIST/) (Otherwise, just repeat

END rest of /LIST/)

NOT, on line 3@ simply outputs the negation of its irput,

TO NOT /INPUT/

1§ TEST IS INPUT “"TRUE"
28 IF TRUE OUTPUT '"FALSE"
38 OUTFPUT "TRUE"

END ‘

The following example illustrates the use of COMMON .

- MAKE *REGIONS* REGIONLIST *"CATS HATS BATS"

~NICEPRINT /REGIONS/ 2

CATS HATS BATS,

CATS HATS NOT-BATS,

CATS NOT~-HATS BATS,

CATS NOT~HATS NOT-BATS,

NOT~CATS HATS BATS,

NO7T-CATS HATS NOT-BATSa»

NOT-CATS NOT~HATS BATS,

NOT-CATS NOT-HATS NOT~-BATS,

~PRINT COMMON **CATS HATS" /REGIONS/

CATS HATS BATS » CATS HATS NOT~BATS ,

“PRINT COMMON 'NOT-BATS' /REGIONS/

CATS HATS NOT-BATS , CATS NOT-HATS NOT~-BATS », NOT-CATS HATS NOT-BATS »
"NOT~CATS NOT-HATS NOT~-BATS , -

54

-30-

ERIC

IToxt Provided by ERI

st
N

.

We look ahead and write a version of OCCUPY which is Just a little
more powerful than we require at the moment. Right now, we need
only have OCCUPY place an 0 in the THING of the region name given
as input. Later, however, we will also want to change a "join"

to an "0" when marking "X"s reduces the number of possible regloﬂs
to 1. 1In this latter case we want to DELETE an inputted "join

number" as well as write in an "O".

TO OCCUPY /JOIN #/ /REGION/
1§ MAKE /REGION/
- SENTENCE
llOl'

DELETE /JOIN #/ (THING OF /REGION/)
END

DELETE goes through /LIST/, deleting each occurrence of /ELEMENT/ .

TO DELETE /ELEMENT/ /LIST/
1§ TEST EMPTYP /LIST/
2¢ IF TRUE OUTPUT /EMPTY/
3¢ TEST IS /ELEMENT/ C(FIRST /LIST/)D
LG IF TRUE QUTPUT DELETE. CBUTFIRST /LIST/)D
58 OUTPUT SENTENCE
FIRST /LIST/

DELETE (BUTFIRST /LIST/)
END

<DELETE "B" "A B C B"
A C

To complete the Jolning algorithm we need only write INCLUDE
/NUMBER/ /LIST/. 1INCLUDE simply includes /NUMBER/ as a member
of the THING of each region name on /LIST/.

Gl
<

TO INCLUDE /NUMBER/ /LIST/
1§ TEST EMPTYP /LIST/

2@ 1F TRUE sTOP

3§ MAKE PULL /LIST/

SENTENCE
THING OF PULL /LIST/
/NUMBER/
49 INCLUDE /NUMBER/ (REST /LIST/)D

END

And we have completed our implemsntation of the Joining algorithm.
We try it out; using the .list /REGIONS/ we generated just before:

«JOIN *'CATS HATS*" | /REGIONS/
«JOIN *'CATS NOT-BAYS*" 2 /REGIONS/
*“NICEPRINT /REGIONS/

CATS HATS BATS»1

CATS HATS NOT-BATS»1 2

CATS NOT~-HATS BATS,

CATS NOT~HATS NOT-BATS,2
NOT-CATS HATS BATS»

NOT-CATS HATS NOT-BATS»
NOT-CATS NOT-HATS BATS,
NOT-CATS NOT-HATS NOT-BATS.,

-

The other operation we will have to perform on our extended
syllogism diagrams is that of "marking off" regions to indicate
the impossibility of their being.occupied. As in the case of
Joining, we will generally have several regions to be marked of'f,
as the result of & given premiss, each containing the elements
specified in the premiss. If a region does not contain anything,
we need merely put an "X" in it. If the region contains "O", we
have a contradiction. The only difficult case is when the region
contains one or more join numbers. When this is true, we us< a
procedure UNJOIN to "remove" all joins from this regior.. To
remove each Join number, /JOIN #/, we make a list, using JOINLIST,
of all other regions dontaining /JOIN #/. If there is exactly one
fegion on ﬁhié list, /JOIN #/ there is replaced by "0o". If

/
f——

V6
-32-

there is more. than one region on the list, these other regions
are not affected. 1In either case /JOIN #/ can ther be removed
ferom the given region. When all join numbers have been removed
from the given region, an "X" can be inserted.

For example, using the smz2ll region list corresﬁonding to "A B",
marking off all regions containing the element "A" in

A B - > 1
A NOT-B > 1
NOT-A B » -1
NOT-A NOT-B > 1
results in

A B . X
A ~ "NOT-B » X
NOT -A B » 1
NOT-A NQT-B » 1

and, doing the same in

A B , 1

A NQT-B , 1

NOT-A B > 1

NOT-A NOT-B o

results in

A B » X ;
A NOT-B > X !
NOT-A B » 0

‘NOT-A ~~ NOT-B R

37 ,
-33-

